Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

San-Nu Zhou, ${ }^{\text {a }}$ Li-Xue Zhang, ${ }^{\text {a }}{ }^{\text {* }}$ Jian-Yu Jin, ${ }^{\text {b }}$ Hong-Ping Xiao ${ }^{\text {a }}$ and An-Jiang Zhang ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China, and ${ }^{\text {b }}$ Department of Education, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail:
zhanglixuelz@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.069$
$w R$ factor $=0.162$
Data-to-parameter ratio $=13.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
6-(Biphenyl-4-yl)-3-(4-ethoxyphenyl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazine

In the title compound, $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}$, the triazole ring is planar, whereas the thiadiazine may be regarded as having a halfchair conformation.

Comment

3,6-Disubstituted $7 H-1,2,4-$ triazolo[3,4-b][1,3,4]thiadiazines are among various heterocycles that have been of interest for over two decades due to their biological activities (Feng et al., 1992; Hui et al., 2000; Mohan \& Anjaneyulu, 1987; Turan et al., 1999; Nadkarni et al., 2001). Biphenyl itself has been used as an antiseptic (Xie et al., 1994), and some heterocycles with biphenyl groups are used as clinical medicines (Feng et al., 2000). We have attached a biphenyl group to $7 \mathrm{H}-1,2,4$-tria-zolo[3,4-b][1,3,4]thiadiazine in the hope of producing compounds with new biological activities. We report here the synthesis and crystal structure of the title compound, (I).

(I)

In (I), the triazole ring and the benzene rings are each essentially planar, while the thiadiazine ring is slightly distorted from planarity and may be regarded as having a halfchair conformation (Fig. 1). Both the $\mathrm{S}-\mathrm{C}$ (mean distance $1.767 \AA$) and the $\mathrm{C}-\mathrm{N}$ bond lengths are in line with those found in related complexes with conjugated triazole rings (Zou et al., 2004, Allen et al., 1987; Table 1). The dihedral angles between the thiadiazine ring and the triazole ring, and between the benzene rings ($\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 7-\mathrm{C} 12$) are both

Received 20 December 2005
Accepted 9 January 2006

Figure 1
The molecular structure of (I), showing the atom numbering and displacement ellipsoids drawn at the 30% probability level.
$15.9(2)^{\circ}$, and that between the triazole ring and the third benzene ring ($\mathrm{C} 17-\mathrm{C} 22$) is 16.2 (1) ${ }^{\circ}$. The biphenyl and 4 ethoxyphenyl rings are located on the same side of the condensed heterocycle and are almost perpendicular to one another, resembling the two front claws of a crab.

Experimental

The key intermediate 4-amino-5-mercapto-3-(4-ethoxyphenyl)-1,2,4triazole, (II), was prepared from 4-ethoxybenzoic acid hydrazide, whose starting material was 4 -ethoxybenzoic acid, following the literature method of Zhang et al. (1990). The starting materials for the thiocarbohydrazide were carbon disulfide and hydrazine hydrate. To a solution of (II) $(0.01 \mathrm{~mol})$ in absolute ethanol (20 ml) was added 4phenylbromoacetophenone (0.01 mol). The mixture was refluxed for 7 h . The solid obtained on cooling was filtered, washed with cold water, dried and recrystallized from ethanol to give (I). The purified product was dissolved in 95% ethanol and single crystals were obtained after 6 d .

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}$	$D_{x}=1.322 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=412.50$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{6} / c$	Cell parameters from 2478
$a=13.129(1) \AA$	\quad reflections
$b=17.3638(13) \AA$	$\theta=2.6-24.3^{\circ}$
$c=9.2648(7) \AA$	$\mu=0.18 \mathrm{~mm}^{-1}$
$\beta=101.189(1)^{\circ}$	$T=298(2) \mathrm{K}$
$V=2071.9(3) \AA^{3}$	Block, colorless
$Z=4$	$0.35 \times 0.21 \times 0.16 \mathrm{~mm}$

Data collection

Bruker APEX area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Bruker, 2002)
$\quad T_{\min }=0.945, T_{\max }=0.970$
10919 measured reflections

3720 independent reflections
3130 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-14 \rightarrow 15$
$k=-19 \rightarrow 20$
$l=-11 \rightarrow 10$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0638 P)^{2}\right. \\
& +0.7764 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\max }=0.46 \mathrm{e}^{-3}{ }^{-3} \\
& \Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.069$
$w R\left(F^{2}\right)=0.162$
$S=1.19$
3720 reflections
272 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C15	$1.730(3)$	$\mathrm{N} 2-\mathrm{C} 16$	$1.377(3)$
S1-C14	$1.804(3)$	$\mathrm{N} 3-\mathrm{C} 15$	$1.299(4)$
N1-C13	$1.285(3)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.391(4)$
N1-N2	$1.388(3)$	$\mathrm{N} 4-\mathrm{C} 16$	$1.314(4)$
N2-C15	$1.373(4)$		
C15-S1-C14	$93.94(15)$	$\mathrm{N} 3-\mathrm{C} 15-\mathrm{N} 2$	$111.2(3)$
C15-N2-C16	$104.8(2)$	$\mathrm{N} 3-\mathrm{C} 15-\mathrm{S} 1$	$129.0(2)$
C15-N2-N1	$127.8(2)$	$\mathrm{N} 2-\mathrm{C} 15-\mathrm{S} 1$	$119.9(2)$
C16-N2-N1	$125.7(2)$		

All H atoms were positioned geometrically and allowed to ride on their parent atoms with $\mathrm{C} s p^{2}-\mathrm{H}=0.93 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and $\mathrm{Csp}{ }^{3}-\mathrm{H}=0.96$ or $0.97 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. M203149).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Feng, X. M., Chen, R. \& Yang, W. D. (1992). Chem. J. Chin. Univ. 13, 187-194.
Feng, Z. X., Zhang, W. N., Zhou, Y. J., Lu, J. G., Zhu, J. \& Li, K. (2000). Chem. J. Chin. Univ. 21, 1221-1226.

Hui, X. P., Zhang, L. M. \& Zhang, Z. Y. (2000). J. Chin. Chem. Soc. 47, 535541.

Mohan, J. \& Anjaneyulu, G. S. R. (1987). Pol. J. Chem. 61, 547-551.
Nadkarni, B. A., Kamat, V. R., Khadse, B. G. (2001). Arzneim. Forsch. 51, 569573.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Turan, Z. G., Kaplancikli, Z. A. \& Erol, K. (1999). Il Farmaco, 54, 218-223.
Xie, M., Yi, M., Wang, J. L., Jin, H. (1994). J. Ji-Nan Univ. (Nat. Sci. Med. Ed.), 15), 76-78.

Zhang, L. X., Zhang, Z. Y. \& Zeng, F. L. (1990). Chem. J. Chin. Univ. 11, $148-$ 151.

Zou, K.-H., Cai, X.-Q., Chen, J.-X., Zhang, L.-X., Zhang, A.-J. \& Hu, M.-L. (2004). Acta Cryst. E60, o1736-o1738.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

